概要:,在电子白板上出示相应操作。(剪切、平移、对于图2加xy原点,可以根据需要进行旋转,平移至相应位置)将两个图形都转化成长方形,学生非常明显可以比较出两个图形的大小。白板:同时出示两个图形的转化过程,要学生小结比较特殊图形大小的方法引出课题:用“转化”的策略解决问题师生小结:为什么要把原来的图形转化成长方形?(原来的复杂,转化后简单便于比较)二、回顾转化实例,感受转化的价值师引导:在以往的学习中,我们曾经运用转化的策略解决过哪些问题?学生列举:平面图形的面积计算、分数小数计算等等白板出示以往学习过的平面图形,要求回答这些图形是转化成什么图形来计算面积的,根据学生回答,教师拖动原始图形,转变成新的图形。白板出示异分母分数加减法,回顾异分母分数加减法都是先转化成同分母分数进行加减师:这些运用转化的策略解决问题的过程有什么共同点?(把新问题转化成熟悉的或者已经解决过的问题。)师小结:转化是一种常用的,也是重要的解决问题的策略。在我们以往的学习中,早就运用了这一策略分析并解决问题了。以后再遇到一个陌生的问题时,你会尝试用什么方法?应用白板进行新课教学,可以根据学生实际灵活进行操作,学生在自主探索过程中通过自己的观察、讨论得到结论,教师在课前的课件制作中也可以尽量减少工作量,提高工作效率。www.guait
小学数学六年级教案——解决问题的策略(电子白板应用),http://www.guaituzi.com教学内容:
第71-72页、试一试、练一练,练习十四
教学目标
知识目标: 使学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。
能力目标:使学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。
情感目标:使学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,主动克服在解决问题中遇到的困难,获得成功的体验。
教学重难点
教学重点:灵活确定解决问题的思路,理解转化策略的价值,丰富学生的策略意识。
教学难点:初步掌握转化的方法和技巧。
教学准备
电子白板 相关课件
教学过程 :
一、观察交流,明确转化的策略
出示图片,让学生比一比两个图形面积大小。
学生观察,讨论,猜测结果
指名汇报结果,并说出比较的方法
教师根据学生叙述,在电子白板上出示相应操作。
(剪切、平移、对于图2加xy原点,可以根据需要进行旋转,平移至相应位置)
将两个图形都转化成长方形,学生非常明显可以比较出两个图形的大小。
白板:同时出示两个图形的转化过程,要学生小结比较特殊图形大小的方法
引出课题:用“转化”的策略解决问题
师生小结:为什么要把原来的图形转化成长方形?(原来的复杂,转化后简单便于比较)
二、回顾转化实例,感受转化的价值
师引导:在以往的学习中,我们曾经运用转化的策略解决过哪些问题?
学生列举:平面图形的面积计算、分数小数计算等等
白板出示以往学习过的平面图形,要求回答这些图形是转化成什么图形来计算面积的,根据学生回答,教师拖动原始图形,转变成新的图形。
白板出示异分母分数加减法,回顾异分母分数加减法都是先转化成同分母分数进行加减
师:这些运用转化的策略解决问题的过程有什么共同点?
(把新问题转化成熟悉的或者已经解决过的问题。)
师小结:转化是一种常用的,也是重要的解决问题的策略。在我们以往的学习中,早就运用了这一策略分析并解决问题了。以后再遇到一个陌生的问题时,你会尝试用什么方法?
应用白板进行新课教学,可以根据学生实际灵活进行操作,学生在自主探索过程中通过自己的观察、讨论得到结论,教师在课前的课件制作中也可以尽量减少工作量,提高工作效率。 www.guaituzi.comwww.guaituzi.com分页标题#e#
三、分层练习,运用转化的策略
第一次:空间与图形的领域
1、练一练1
白板在方格纸上出示题目,让学生思考怎样计算图形的周长比较简单。
学生独立思考后,指名回答方法。师在白板上根据回答移动边,最后拼成规则图形。
明确:可以把这个图形转化成长方形计算周长
提问:如果每个小方格的边长是1厘米,这个图形的周长是多少厘米?你是怎样计算的,有没有简便方法?
学生计算后,再让学生说说解决这个问题的策略是什么?(把精确图形转化成简单图形)
2、练习十四 第二题 用分数表示图中的涂色部分
让学生各自看图填空,学生解决问题后,指名学生到讲台上说说是怎样想到转化的方法的,以及分别是怎么转化的。边说边用笔在白板上操作。
其中第3小题的图形要先旋转,再移动,让图形与方格纸重合。
3、练习十四 第三题
先让学生独立解答,再让学生到白板前进行操作,其他学生进行点评,进一步指出转化策略在解题过程中的作用。
第二次 数与代数的领域
1、教学试一试
出示算式,提问:这道题可以怎样计算?
2、指名学生回答后,出示正方形图,提出要求:你能说说图中哪一部分表示这几数的和吗?
3、引导看图想一想,可以把这一算式转化成怎样的算式计算?
对学有困难的学生可以提示:空白部分是大正方形的几分之几?能不能根据空白部分求出涂色部分?
4、师生小结:在解决问题的时候,我们要善于从不同的角度灵活地分析问题,这样有利于我们想到合理的转化方法。
5、练习十四 第一题
出示问题,指导学生理解题意。
白板出示分析图,帮助学生理解。
让学生数一数,一共要进行多少场比赛后才能产生冠军?明确数的时候可以根据图一层一层地数。
启发:如果不画图,有更简单的方法吗?
在白板上指图提示学生,产生冠军,一共要淘汰多少支球队?
进一步提出问题:如果有64支球队,产生冠军一共要比赛多少场?
四、师生总结:今天我们学习了运用转化的策略解决问题,你对转化的策略又有了什么新的认识?
本课练习大部分内容通过学生自主练习,共同探索,达到教学目的。由于简单,可操作性强,学生可以到白板上进行实际演示,非常直观。
五、拓展练习,巩固转化的策略
1、立体图形中,我们有没有用到过转化策略解决问题?怎样求圆柱的体积? www.guaituzi.com分页标题#e#
2、你能不能求出灯泡的容积?