您现在的位置: 乖兔子中小学教育小升初小升初数学小学数学综合训练应用题及解析(4) -- 正文

小学数学综合训练应用题及解析(4)

[11-26 06:48:30]   来源:http://www.guaituzi.com  小升初数学   阅读:58553

概要:4分钟。所以乙行的12分钟,甲需要12÷6×4=8分钟,所以甲行一圈需要8+12=20分钟。乙行一圈需要20÷4×6=30分钟。4. 甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8点经过邮局,乙上午10点经过邮局,问甲、乙在中途何时相遇?解:我们把乙行1小时的路程看作1份,那么上午8时,甲乙相距10-8=2份。所以相遇时,乙行了2÷(1+1.5)=0.8份,0.8×60=48分钟,所以在8点48分相遇。5. 甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍.甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰.求从山顶到山脚的距离.解:假设甲乙可以继续上行,那么甲乙的速度比是(1+1÷2):(1+1/2÷2)=6:5所以当甲行到山顶时,乙就行了5/6,所以从山顶到山脚的距离是400÷(1-5/6)=2400米。6. 一辆公共汽车载了一些乘客从起点出发,在第一站下车的乘客是车上总数(含一名司机和两名售票员)的1/7,第二站下车的乘客是车上总人数的1/6,.......第六站下车的乘客是车上总人数的1/2,再开车是车上就剩下1名乘客了

小学数学综合训练应用题及解析(4),http://www.guaituzi.com

   1. 一个四位数除以119余96,除以120余80.求这四位数.

解:用盈亏问题的思想来解答。

商是(96-80)÷(120-119)=16,所以被除数是120×16+80=2000。

 2. 有四个不同的自然数,其中任意两个数之和是2的倍数,任意三个数的和是3的倍数,求满足条件的最小的四个自然数.

解:任意两个数之和是2的倍数,说明这些数全部是偶数或者全部是奇数。

任意三个数的和是3的倍数,说明这些数除以3的余数相同。

要满足条件的最小自然数,因为0是自然数了。所以我认为结果是0、6、12、18。

3. 在一环形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇.甲、乙环行一周各需要多少分钟?

解:甲乙合行一圈需要8+4=12分钟。乙行6分钟的路程,甲只需4分钟。

所以乙行的12分钟,甲需要12÷6×4=8分钟,所以甲行一圈需要8+12=20分钟。乙行一圈需要20÷4×6=30分钟。

4. 甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8点经过邮局,乙上午10点经过邮局,问甲、乙在中途何时相遇?

解:我们把乙行1小时的路程看作1份,

那么上午8时,甲乙相距10-8=2份。

所以相遇时,乙行了2÷(1+1.5)=0.8份,0.8×60=48分钟,

所以在8点48分相遇。

 5. 甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍.甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰.求从山顶到山脚的距离.

解:假设甲乙可以继续上行,那么甲乙的速度比是(1+1÷2):(1+1/2÷2)=6:5

所以当甲行到山顶时,乙就行了5/6,所以从山顶到山脚的距离是400÷(1-5/6)=2400米。

 6. 一辆公共汽车载了一些乘客从起点出发,在第一站下车的乘客是车上总数(含一名司机和两名售票员)的1/7,第二站下车的乘客是车上总人数的1/6,.......第六站下车的乘客是车上总人数的1/2,再开车是车上就剩下1名乘客了.已知途中没有人上车,问从起点出发时,车上有多少名乘客?

解: 最后剩下1+1+2=4人。那么车上总人数是

4÷(1-1/2)÷(1-1/3)÷……÷(1-1/6)÷(1-1/7)=28人

那么,起点时车上乘客有28-3=25人。

7. 有三块草地,面积分别是4亩、8亩、10亩.草地上的草一样厚,而且长得一样快,第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问第三块草地可供50头牛吃几周?

解法一:设每头牛每周吃1份草。

第一块草地4亩可供24头牛吃6周,

说明每亩可供24÷4=6头牛吃6周。

第二块草地8亩可共36头牛吃12周,

说明每亩草地可供36÷8=9/2头牛吃12周。

所以,每亩草地每周要长(9/2×12-6×6)÷(12-6)=3份

所以,每亩原有草6×6-6×3=18份。

因此,第三块草地原有草18×10=180份,每周长3×10=30份。

所以,第三块草地可供50头牛吃180÷(50-30)=9周

解法二:设每头牛每周吃1份草。我们把题目进行变形。

有一块1亩的草地,可供24÷4=6头牛吃6周,供36÷8=9/2头牛吃12周,那么可供50÷10=5头牛吃多少周呢?

所以,每周草会长(9/2×12-6×6)÷(12-6)=3份,

原有草(6-3)×6=18份,

那么就够5头牛吃18÷(5-3)=9周

 8. B地在A,C两地之间.甲从B地到A地去,出发后1小时,乙从B地出发到C地,乙出发后1小时,丙突然想起要通知甲、乙一件重要的事情,于是从B地出发骑车去追赶甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出发到最终赶回B地所用的时间最少,丙应当先追甲再返回追乙,还是先追乙再返回追甲?

我的思考如下:

如果先追乙返回,时间是1÷(3-1)×2=1小时,

再追甲后返回,时间是3÷(3-1)×2=3小时,

共用去3+1=4小时

如果先追甲返回,时间是2÷(3-1)×2=2小时,

再追乙后返回,时间是3÷(3-1)×2=3小时,

共用去2+3=5小时

所以先追乙时间最少。故先追更后出发的。

9. 一把小刀售价3元.如果小明买了这把小刀,那么小明与小强的钱数之比是2:5;如果小强买了这把小刀,那么两人的钱数之比是8:13.小明原来有多少元钱?

解法一:

小明买,小明剩下的钱是两人剩下的钱的2÷(2+5)=2/7

如果小强买,那么小明的钱是两人剩下的钱的8÷(8+13)=8/21

所以小明剩下的钱占他自己原来的钱的2/7÷8/21=3/4。

所以小明原来的钱有3÷(1-3/4)=12元。

解法二:

如果小明买,

剩下(8+13)÷(2+5)×2=6份,

用掉8-6=2份。

所以小明有3÷2×8=12元。

10. 环形跑道周长是500米,甲、乙两人从起点按顺时针方向同时出发.甲每分钟跑120米,乙每分钟跑100米,两人都是每跑200米停下来休息1分钟,那么甲第一次追上乙需要多少分钟?

解:对于这个题目,我有两个理解。

第一,甲乙出发后第一次停留在同一个地方。

那么就有当甲行200米之后,再出发的时间是200÷120+1>2分钟。

这时,乙用2分钟,也行了100×2=200米的地方。

意思是说,乙行了2分钟,就和在休息的甲在200米的地方停留。

第二,甲比乙多行500米而追上。

因为行完之后,甲比乙多行500米,

那么就说明多休息500÷200=2……100,即2次。

即甲追乙的路程是500+100×2=700米

要追700米,甲需要走700÷(120-100)=35分

甲行35分钟需要休息35×120÷200-1=20分

所以共需35+20=55分
 


标签:小升初数学小升初数学试卷及答案小升初 - 小升初数学

联系我们 | 网站地图 | 范文写作 | 作文指导 | 课件试题教案 | 中小学 | 小升初 | 初中学习 | 高中学习
Copyright 乖兔子 All Right Reserved.
1 2 3 4