概要:的次数分别为11次和3次。如果出21题的次数是14次,则剩余的374-21*14=80即使出16题也只有5次所以是不可能的。所以正确答案是出16,21,24题的分别有11、6、3次。72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?解:这是一个关于余数的题目。 根据题目可以知道。这个数▲=2■+1;■=5△+4;△=6●+1。所以■=5×(6●+1)+4=30●+9所以▲=2×(30●+9)+1=60●+19所以原数除以60的余数是19。因为2*5*6=60所以用这个整数除以60,余数是(1*5+4)*2+1=1973. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?解:如果每人载3×2=6棵苹果树苗,则余2×2=4棵所以少先队员人数是(4+6)÷(7-6)=10人所以梨树有3×10+2=32棵 共有32×(2+1)=96棵解:苹果树苗是梨树苗的2倍.每人栽3棵梨树苗,余2棵;如果每人栽6棵苹果树苗,应余4棵;每人栽7棵苹果树苗,则少6棵.所以应该共有4+6=10名少先队
2017小升初数学应用题综合训练(8),http://www.guaituzi.com71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?
如果每次都出16题,那么就出了16×20=320道 相差374-320=54道,
每出1次21道的就多21-16=5道,每出1次24道的就多24-16=8道,所以54是5的倍数与8的倍数的和。
由于54是偶数,8的倍数是偶数,所以5的倍数也是偶数,所以5的倍数的个位数字是0。
所以8的倍数的个位数字是4,在小于54的所有整数中,只有24÷8=3才符合,
所以,出24道题的有3次。出21道题的有(54-24)÷5=6次。出16道题的是20-6-3=11道。
因为16和24都是8的倍数,所以出21题的次数应该是6次或6+8次。
如果出21题的次数是6次,则出16题的次数和出24题的次数分别为11次和3次。
如果出21题的次数是14次,则剩余的374-21*14=80即使出16题也只有5次所以是不可能的。
所以正确答案是出16,21,24题的分别有11、6、3次。
72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?
解:这是一个关于余数的题目。 根据题目可以知道。
这个数▲=2■+1;■=5△+4;△=6●+1。
所以■=5×(6●+1)+4=30●+9
所以▲=2×(30●+9)+1=60●+19
所以原数除以60的余数是19。
因为2*5*6=60
所以用这个整数除以60,余数是(1*5+4)*2+1=19
73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?
解:如果每人载3×2=6棵苹果树苗,则余2×2=4棵
所以少先队员人数是(4+6)÷(7-6)=10人
所以梨树有3×10+2=32棵 共有32×(2+1)=96棵
解:苹果树苗是梨树苗的2倍.
每人栽3棵梨树苗,余2棵;
如果每人栽6棵苹果树苗,应余4棵;
每人栽7棵苹果树苗,则少6棵.
所以应该共有4+6=10名少先队员,苹果和梨树苗分别有64和32棵。
74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米?
解:由于休息半小时,就少行了56×1/2=28千米。这28千米,刚好是后面28÷14=2小时多行的路程
所以后来的路程是(56+14)×2=140千米。所以修车地点离A城有200-140=60千米。
75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.
解:第一次相遇时,两人合行了一个全程,其中乙行了全程的2÷(2+3)=2/5
第二次相遇时,两人合行了3个全程,其中乙行了全程的2/5×3=6/5
两次相遇点之间的距离占全程的2-6/5-2/5=2/5
所以全程是3000÷2/5=7500米。
解 乙的速度是甲的2/3 即甲速:乙速=3:2 所以第一次相遇时甲走了全程的3/5,乙走了全程的2/5
第二次相遇的地点距第一次相遇 甲共走了2倍全程的3/5=6/5,乙走了2倍全程的2/5=4/5 6/5-4/5=2/5,即相差全程的2/5 A、B两地的距离=3000/(2/5)=7500米
综合:3000/[2*3/(2+3)-2*2/(3+2)]=50(千米)
76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?
C 顺水速度是逆水速度的2倍,那么逆水速度就是水流速度的2倍,静水速度就是水流速度的3倍,所以水流速度是9÷3=3千米/小时
下雨时,水流速度是3×2=6千米/小时,
逆行速度是9-6=3千米/小时
顺行速度是9+6=15千米/小时
所以往返时,逆行时间和顺行时间比是5:1
所以顺行时间是10÷(5+1)=5/3小时
所以甲乙两港相距5/3×15=25千米
解:无论水速多少,逆水与顺水速度和均为9*2=18
故:
水速 FlowSpeed=18/3/2=3;
船速 ShipSpeed=FlowSpeed+18/3=9;
when rains , Flowspeed=6;
顺水s1=9+6=15;
逆水s2=9-6=3;
顺水单程时间10*(3/(15+3))=5/3;
so, 相距5/3 *15=25km
77. 某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?
解:假设每组三人,其中3×1/3=1人被录取。 每组总得分80×3=240分。 录取者比没有被录取者多6+15=21分。 所以,没有被录取的分数是(240-21)÷3=73分 所以,录取分数线是73+15=88分
解:因为没录取的学生数是录取的学生数的:
(1-1/3)/1/3=2倍,二者的平均分之间相差:15+6=21分的距离,所以,在均衡分数时,没录取的学生平均分每提高一分,录取的学生的平均分就要降低2分, 这样二者的分差就减少了3分,21/3=7,即要进行7次这样的均衡才能达到平均分80分,在这个均衡过程中,录取的学生的平均分降低了:2*7=14分,
所以,录取分数线是:80+14-6=88分,
78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?
解: 如果每人搬7块,就会余下30×(8-7)+20=50块
所以搬5块的人有(148-50)÷(7-5)=49人
所以学生共有12+49=61人,砖有61×7+50=477块。
解:12人每人各搬7块,当他们搬8块的时候,多搬了12块
18人每人各搬5块,当他们搬动8块的时候,多搬了18*3=54块